Deep Open Set Recognition Using Dynamic Intra-class Splitting
نویسندگان
چکیده
منابع مشابه
Multi-class Open Set Recognition Using Probability of Inclusion
The perceived success of recent visual recognition approaches has largely been derived from their performance on classification tasks, where all possible classes are known at training time. But what about open set problems, where unknown classes appear at test time? Intuitively, if we could accurately model just the positive data for any known class without overfitting, we could reject the larg...
متن کاملSupplemental Material: Multi-Class Open Set Recognition Using Probability of Inclusion
In this supplemental material we present additional plots that are meant to add to the reader’s understanding of the open set recognition problem and our solution. We start with a look at SVM decision surfaces, and then offer a discussion of the difference in observed performance when Accuracy or F-measure is reported as an evaluation statistic. We also provide plots showing performance with al...
متن کاملNamed Entity Recognition in Persian Text using Deep Learning
Named entities recognition is a fundamental task in the field of natural language processing. It is also known as a subset of information extraction. The process of recognizing named entities aims at finding proper nouns in the text and classifying them into predetermined classes such as names of people, organizations, and places. In this paper, we propose a named entity recognizer which benefi...
متن کاملSpeech Emotion Recognition Using Scalogram Based Deep Structure
Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...
متن کاملTowards Open Set Deep Networks: Supplemental
In this supplement, we provide we provide additional material to further the reader as understanding of the work on Open Set Deep Networks, Mean Activation Vectors, Open Set Recognition and OpenMax algorithm. We present additional experiments on ILSVRC 2012 dataset. First we present experiments to illustrate performance of OpenMax for various parameters of EVT calibration (Alg. 1, main paper) f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SN Computer Science
سال: 2020
ISSN: 2662-995X,2661-8907
DOI: 10.1007/s42979-020-0086-9